Crystal Structure and Photochemistry of Dimethyl 1,4-Dihydro-1,4,5,8-tetramethyl-1,4-ethenonaphthalene-2,3-dicarboxylate

By Ray Jones, John R. Scheffer, James Trotter and Melvin Yap
Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1 Z1

(Received 30 November 1993; accepted 7 March 1994)

Abstract

The photochemical rearrangement of a bridgeheadmethylated 1,4 -ethenonaphthalene has been studied by crystal structure analyses of ($1 b$) and two of its photoproducts ($2 b$ and $3 b$). Crystal data: $T=295 \mathrm{~K}$, $\mathrm{Cu} K \alpha, \quad \lambda=1.54178 \AA, \quad \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}, \quad M_{r}=326.39$. Dimethyl 1,4-dihydro-1,4,5,8-tetramethyl-1,4-etheno-naphthalene-2,3-dicarboxylate ($1 b$), $\quad P 2_{1} c, \quad a=$ 12.643 (1) $, \quad b=9.288(1), \quad c=15.153$ (1) $\AA, \quad \beta=$ $105.70(1)^{\circ}, Z=4, R=0.037$ for 1974 reflections with $I>3 \sigma(I)$. Dimethyl $2 a, 2 b, 6 b, 6 c$-tetrahydro$1,2 b, 3,6$-tetramethylbenzo[a]cyclopropa $[c, d]$ penta-lene- $6 b, 6 c$-dicarboxylate ($2 b$) $, P c a 2_{1}, \quad a=7.325$ (1), $b=14.781$ (1), $c=15.535$ (1) $\AA, Z=4, R=0.045$ for 1419 reflections. Dimethyl 1,4,6,9-tetramethylbenzo-cyclooctatetraene-5,10-dicarboxylate (3b), Pbca, $a=$ 17.716 (2), $b=15.298$ (2), $\quad c=13.210$ (3) $\AA, \quad Z=8$, $R=0.046$ for 2265 reflections. Molecule ($1 b$) exhibits steric strain, as a result of short intramolecular $\mathrm{Me} \cdots \mathrm{Me}$ contacts $[2.963$ (5) and 3.013 (5) \AA]. The formation of photoproducts ($2 b$) and ($3 b$) can be rationalized in terms of mechanisms involving benzovinyl bonding, which relieves the steric crowding between methyl groups.

Introduction

Previous photochemical and crystallographic studies of bridgehead-methylated dibenzobarrelene derivatives have shown that these compounds undergo unusual photo-rearrangements compared with their non-methylated counterparts (Pokkuluri, Scheffer \& Trotter, 1990, 1993a,b,c). To determine whether such reactivity differences apply to other systems, related monobenzobarrelene derivatives have now been studied. Photolysis of solutions of diester (1a) produces the benzosemibullvalene ($2 a$) on benzo-phenone-sensitized irradiation (via the triplet state) and benzocyclooctatetraene ($3 a$) on direct irradiation (via the singlet state) (Scheffer \& Yap, 1989; Trotter, 1989). Solution photolysis of the tetramethylated compound ($1 b$) resulted in ($2 b$) on sensitized and ($2 b$) and ($3 b$) on direct irradiation. The structures of ($2 b$) and ($3 b$) have now been established by crystal structure analysis and the crystal structure of ($1 b$) has also
been determined, allowing mechanisms for the photoreaction of ($1 b$) to be proposed.

(a) $R=\mathrm{H}, E=\mathrm{COOMe}$
(b) $R=\mathrm{Me}, E=\mathrm{COOMe}$
(1)

(2a)
$+$

(3a)

(2b)
$+$

(3b)

Experimental

Unit-cell parameters and X-ray intensities, measured on a Rigaku AFC6-S diffractometer, are summarized in Table 1. All three structures were solved by direct methods and refined by full-matrix least-squares procedures with $w=1 / \sigma^{2}(F)$. All non-H atoms in the three structures were refined anisotropically. For ($1 b$) and ($3 b$), H atoms were located from difference maps and positional and isotropic thermal parameters
were refined. The C 15 and C 16 H atoms in ($3 b$) are disordered over two sets of sites; these H atoms were placed in calculated positions, based on the difference map, and one site occupancy factor for each group was refined, to $0.56 / 0.44$ for C 15 H atoms and $0.59 / 0.41$ for C 16 . For ($2 b$), H atoms were placed in calculated positions and not refined. For ($2 b$), refinement of the opposite polarity gave no significant difference in R factors. Scattering factors were from International Tables for X-ray Crystallography (1974, Vol. IV) and computer programs as supplied in TEXSAN (Molecular Structure Corporation, 1989). Details of the refinements are given in Table 1.

Discussion

Final positional parameters are given in Table 2, selected molecular parameters in Table 3 and other data have been deposited.*
The structure and dimensions of the molecule of the ethenonaphthalene diester ($1 b$) are quite similar to those of related di- and monobenzobarrelenes (Pokkuluri, Scheffer \& Trotter, 1993a,b; Trotter, 1989). The bond angles external to the aromatic ring, mean $126.3(2)^{\circ}$, are distorted to about the same extent as in the other derivatives. The $\mathrm{C} 2-\mathrm{C} 3$ and C9-C10 distances, 1.321 (4) and 1.304 (5) \AA, correspond to double bonds (Fig. 1). The two ester groups are rotated out of the plane of the $\mathrm{C} 2=\mathrm{C} 3$ double bond, so that there is only partial conjugation with the $\mathrm{C}=\mathrm{O}$ bonds of the ester groups; $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ torsion angles are $-62.5(3)^{\circ}$ at the C 2 ester group [$\cos ^{2}($ angle $\left.)=0.21\right]$ and $132.3(3)^{\circ}$ at the C3 group $\left[\cos ^{2}(\right.$ angle $\left.)=0.45\right]$. The $\mathrm{C}-\mathrm{CO}_{2} \mathrm{Me}$ bond lengths [1.493 (3) and 1.485 (3) \AA] are in accordance with this difference in the amount of conjugation (although the bond-length difference is not statistically significant). A major difference between the molecules of (1a) (Trotter, 1989) and (1b) is steric strain in ($1 b$) as a result of the proximity of the substituent methyl groups. The $\mathrm{C} 11 \cdots \mathrm{C} 18$ and C16 $\cdots \mathrm{C} 17$ non-bonded distances (Fig. 1) are 2.963 (5) and 3.013 (5) \AA, respectively, much shorter than the normal van der Waals distance of $4 \AA$; the repulsion between the methyl groups results in distortion of the bond angles, with $\mathrm{C}-\mathrm{C}-\mathrm{Me}$ increased to 127.4 (2) ${ }^{\circ}$ at the aromatic C atoms and $119.3(2)^{\circ}$ at the bridgehead C atoms. The bridgehead-aromatic ring $\mathrm{C}-\mathrm{C}$ bonds are also stretched, the $\mathrm{C} 1-\mathrm{C} 8 A$ and $\mathrm{C} 4-\mathrm{C} 4 A$ bond lengths being 1.566 (3) and 1.561 (3) \AA, respectively.

[^0]Table 1. Crystal data, data collection and refinement parameters

Crystal data

Compound	$(1 b)$	$(2 b)$	$(3 b)$
Formula	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$
M,	326.39	326.39	326.39
Dimensions	$0.5 \times 0.2 \times 0.05$	$0.35 \times 0.35 \times 0.15$	$0.4 \times 0.25 \times 0.15$
Crystal system	Monoclinic	Orthorhombic	Orthorhombic
Space group	$P 2_{1} / c$	$P c a 2_{1}$	Pbca
$a(\AA)$	$12.643(1)$	$7.325(1)$	$17.716(2)$
$b(\AA)$	$9.288(1)$	$14.781(1)$	$15.298(2)$
$c(\AA)$	$15.153(1)$	$15.535(1)$	$13.210(3)$
$\beta\left({ }^{\circ}\right)$	$105.70(1)$	90	90
$V\left(\AA^{3}\right)$	$1713(1)$	$1682(1)$	$3580(2)$
Z	4	4	8
$D_{c}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	1.27	1.29	1.21
$F(000)$	696	696	1392
$\mu\left(\mathrm{~cm}^{-1}\right)$	6.7	6.8	6.4

Data collection
Reflections for cell

Number	25	24	19
$2 \theta\left({ }^{\circ}\right)$	25-42	89-112	68-88
$2 \theta_{\text {max }}\left({ }^{\circ}\right.$)	155.2	155.2	155.2
Scan type	$\omega-2 \theta$	$\omega-2 \theta$	$\omega 2 \theta$
$\begin{gathered} \left.\omega \text { scan width (}{ }^{\circ}\right) \\ a+b \tan \theta \end{gathered}$			
a	1.21	1.21	1.10
b	0.20	0.20	0.20
$\begin{aligned} & \text { Scan speed* } \\ & \text { (} \min ^{-1} \text {) } \end{aligned}$	32.0	32.0	16.0
h	0-16	0-9	0-22
k	0-12	020	0-19
l	-19-19	0-19	-17-0
Decay (\%)	2.3	0.7	1.1
Absorption	ψ scans	ψ scans	ψ scans
Transmission	0.94-1.0	0.98-1.0	0.57-1.0
Total unique reflections	3730	1831	4139
Reflections $>3 \sigma(I)$	1974	1419	2265
\%	52.9	77.5	54.7
Refinements			
No. of parameters	306	217	284
Observations/ parameters	6.45	6.53	7.97
$\Delta / \sigma_{\text {max }}$	0.0004	0.007	0.002
GOF	1.98	3.90	2.75
$\Delta \rho\left(\mathrm{e} \AA^{-3}\right)$	-0.17 to +0.14	-0.18 to +0.20	-0.28 to +0.30
R	0.037	0.045	0.046
$R_{\text {w }}$	0.033	0.047	0.042
Extinction ($\times 10^{6}$)	1.22	5.85	0.29
p factor \dagger	0	0	0

* Up to eight rescans for reflections with $l<40 \sigma(I)$.
$\dagger \sigma^{2}(I)=S+4\left(B_{1}+B_{2}\right)+(p I)^{2}$, where $S=$ scan, B_{1} and $B_{2}=$ background counts.

The ring system in photoproduct ($2 b$) shows the usual additional strain as a result of the formation of the three-membered ring (Pokkuluri, Scheffer \& Trotter 1993b). The external angles at the five/sixmembered ring junction are increased to $129.0(4)^{\circ}$; angles in the three-membered ring are in the range 58.9-61.1 (3) ${ }^{\circ}$. The benzocyclooctatetraene photoproduct ($3 b$) has a molecular structure similar to that of the related dibenzo analogues (Pokkuluri, Scheffer \& Trotter, 1993a,b,c), with a tub conformation for the eight-membered ring. The bond angles at the ring junction show little distortion from normal values, mean external angle 119.3 (2), and the angles in the

Table 2. Positional and equivalent isotropic thermal parameters, with standard deviations in parentheses

	$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	(1b)			
	x	y	z	$B_{\text {eq }}$
O1	0.1018 (1)	0.5415 (2)	0.2206 (1)	5.62 (8)
O2	0.1863 (1)	0.4480 (2)	0.1228 (1)	5.65 (8)
O3	0.0405 (1)	0.2035 (2)	0.1519 (1)	4.72 (7)
O4	0.1603 (2)	0.0283 (2)	0.1471 (1)	6.7 (1)
Cl	0.2995 (2)	0.3993 (3)	0.3611 (1)	4.0 (1)
C2	0.2189 (2)	0.3457 (3)	0.2720 (1)	3.8 (1)
C3	0.2041 (2)	0.2049 (3)	0.2669 (1)	4.1 (1)
C4	0.2680 (2)	0.1210 (3)	0.3524 (2)	4.5 (1)
C4A	0.3906 (2)	0.1624 (3)	0.3636 (1)	4.2 (1)
C5	0.4788 (2)	0.0677 (3)	0.3729 (1)	5.0 (1)
C6	0.5822 (2)	0.1299 (4)	0.3825 (2)	5.8 (1)
C7	0.5971 (2)	0.2735 (4)	0.3813 (2)	5.5 (1)
C8	0.5106 (2)	0.3717 (3)	0.3718 (1)	4.4 (1)
C8A	0.4071 (2)	0.3125 (3)	0.3655 (1)	4.0 (1)
C9	0.2565 (2)	0.3355 (4)	0.4378 (2)	4.6 (1)
C10	0.2410 (2)	0.1966 (4)	0.4334 (2)	4.9 (1)
C11	0.3068 (2)	0.5624 (3)	0.3697 (2)	5.2 (1)
C12	0.1687 (2)	0.4480 (3)	0.1962 (1)	3.9 (1)
C13	0.0584 (3)	0.6548 (4)	0.1555 (3)	7.1 (2)
C14	0.1356 (2)	0.1323 (3)	0.1836 (2)	4.4 (1)
C15	-0.0286 (3)	0.1540 (5)	0.0646 (2)	6.7 (2)
C16	0.2344 (3)	-0.0377 (4)	0.3494 (3)	6.4 (2)
C17	0.4752 (3)	-0.0938 (4)	0.3729 (3)	6.5 (2)
C18	0.5392 (3)	0.5282 (4)	0.3679 (2)	5.8 (1)

x		y		z	$B_{\text {eq }}$
$\mathrm{Cl1}-0.080$	1 (2)	0.1442		0.5549 (3)	4.3 (1)
$\mathrm{Cl2} 0.24$	(2)	0.1734		0.6009 (3)	4.5 (2)
Cl 30.186	(1)	0.3737		0.6349 (2)	3.5 (1)
Cl 40.16	(3)	0.4019		0.8079 (3)	7.4 (3)
C 15 0.2180	0 (1)	0.4359		0.4221 (2)	4.6 (1)
C16 -0.04	(2)	0.4206		0.3809 (2)	5.8 (2)
C17 -0.05	(1)	0.3476		0.5919 (2)	3.7 (1)
$\mathrm{Cl} 8-0.088$	(3)	0.3553		0.7659 (4)	8.2 (3)
Table 3. Ranges or averages of bond lengths (\AA) and angles $\left({ }^{\circ}\right)$					
(1b)			(2b)		(3b)
$\mathrm{C}=\mathrm{C}$	1.321, 1.304 (5)				1.316-1.342 (3)
$\mathrm{C}-\mathrm{C}$ (aromatic)	1.348-1.409 (5)			410 (8)	1.381-1.403 (3)
$\mathrm{C}-\mathrm{CO}_{2} \mathrm{Me}$	$1.493,1.485$ (3)			. 489 (6)	1.483, 1.478 (3)
$\mathrm{C}-\mathrm{C}$ (other)	1.501-1.566 (4)			549 (6)	1.470-1.516 (4)
$\mathrm{C}=0$	1.195 (3)				1.199 (3)
$\mathrm{C}-\mathrm{OMe}$	1.337 (3)				1.312 (3)
$\mathrm{O}-\mathrm{Me}$	1.447 (3)				1.446 (5)
Angles					
Ring junction (external)	126.3 (2)				119.3 (2)
$\mathrm{C}-\mathrm{C}\left(s p^{2}\right)-\mathrm{Me}$	127.4, 116.2 (2)		123.8, 119.0 (4)		$\begin{aligned} & 122.1,119.2 \\ & 126.0,113.2(2) \end{aligned}$
$\mathrm{C}-\mathrm{C}\left(s p^{3}\right)-\mathrm{Me}$	119.3, 113.4 (2)		120.4, 117.1 (4)		, 113.2 (2)
$\mathrm{C}-\mathrm{C}-\mathrm{C}$	-		58.9-61.1 (3)		-
$\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$	-		-		119.9-125.2 (3)

eight-membered ring are in the range 119.9$125.2(2)^{\circ}$, with the largest values at the unsubstituted C atoms. The bond lengths in the eightmembered ring correspond to double [1.3161.342 (3) \AA], aromatic [1.403 (3) \AA] and single bonds [1.470-1.500 (3) \AA]. The ester groups are not far from fully conjugated with the neighbouring $\mathrm{C}=\mathrm{C}$ double bond systems; $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ torsion angles are $-26.5(4)^{\circ}$ for the C 5 ester group $\left[\cos ^{2}\right.$ (angle) $=$ 0.80] and $21.0(4)^{\circ}$ for the C 10 group [$\cos ^{2}$ (angle) $=$ 0.87]. The $\mathrm{C}-\mathrm{CO}_{2} \mathrm{Me}$ bond lengths, mean 1.480 (3) \AA, are (barely significantly) shorter than the lengths in (1b) [mean 1.489 (3) \AA].

Photochemistry of (lb)

Photolysis of the tetramethylated compound (lb) produces photoproducts ($2 b$) and ($3 b$) with substitution patterns quite different from those derived from the parent compound ($1 a$) (which gives $2 a$ and $3 a$). The factor which causes this different behaviour is most likely the steric crowding resulting from the intramolecular Me \cdots Me contacts of 2.96 and $3.01 \AA$ in ($1 b$). The mechanism proposed for the formation of (3a) from (la) involves initial intramolecular $[2+2]$ photocycloaddition between the two vinyl groups, followed by electrocyclic ring opening (Bender \& Brooks, 1975). The same pathway in (1b) would involve initial bond formations $\mathrm{C} 2-\mathrm{C} 9$ and $\mathrm{C} 3-\mathrm{Cl} 0$ (Fig. 1). This would result in methyl groups C11 and C16 moving even closer to methyl

Fig. 1. Structures of $(1 b),(2 b)$ and $3(b)(50 \%$ thermal probability ellipsoids).
groups C 18 and C 17 ; molecular modelling calculations indicate $\mathrm{Me} \cdots$ Me separations of ca $2.86 \AA$ in the intermediate $[2+2]$ cycloadduct (Jones, Scheffer, Trotter \& Yap, 1993).
The formation of the experimentally observed singlet-state photoproduct ($3 b$) can be rationalized as occurring through intramolecular photocycloaddition in ($1 b$) between the ester-substituted double bond and the double bond of the aromatic ring, followed by electrocyclic reorganization. This mechanism relieves the steric crowding between the methyl groups, the formation of $\mathrm{C} 2-\mathrm{C} 8 A$ and $\mathrm{C} 3-\mathrm{C} 4 A$ bonds increasing the $\mathrm{C} 11 \cdots \mathrm{C} 18$ and C16...C17 contacts (to ca $3.1 \AA$). This sterically favoured pathway leads to (3b) and appears to be followed, despite the fact that it involves initial disruption of aromaticity.
The formation of photoproduct (2b) from (1b) can be analysed in a similar manner: sterically-assisted benzo-vinyl bridging (rather than the vinyl-vinyl bridging in $1 a$), followed by opening of the new three-membered ring to regenerate aromaticity and form a tertiary allylic radical, and final closure to give $2(b)$.

We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

References

Bender, C. O. \& Brooks, D. W. (1975). Can. J. Chem. 53, 1684-1689.
Jones, R., Scheffer, J. R., Trotter, J. \& Yap, M. (1993). Tetrahedron Lett. 34, 31-34.
Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structures Analysis Software. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA
Pokkuluri, P. R., Scheffer, J. R. \& Trotter, J. (1990). J. Am. Chem. Soc. 112, 3676-3677.
Pokkuluri, P. R., Scheffer, J. R. \& Trotter, J. (1993a). Acta Cryst. B49, 107-116.
Pokkuluri, P. R., Scheffer, J. R. \& Trotter, J. (1993b). Acta Cryst. B49, 754-760
Pokkuluri, P. R., Scheffer, J. R. \& Trotter, J. (1993c). Acta Cryst. B49, 1049-1052.
Scheffer, J. R. \& Yap, M. (1989). J. Org. Chem. 54, 2561-2563.
Trotter, J. (1989). Acta Cryst. C45, 1250-1251.

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry have been deposited with the IUCr (Reference: BR0027). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

